

行人碰撞安全法規之研究與探討

前言

據統計,每年全世界約有120萬人死於道路交 通事故,道路交通傷害是第10大死亡原因;事故所 造成的經濟損失達5,180億美元,在某些國家其事故 造成的經濟損失約佔國民生產總值的1%~2%。有鑑 於此,歐美政府基於對車內乘員安全保護,制訂許 多相關的車輛安全法規,促使各家車廠提高對車輛 安全性能要求,使得行車安全性顯著提高。因此, 早期車廠在車輛設計主要著眼點爲『車輛內部』的 乘員安全,如輔助拘束系統(SRS)、乘員頸部保護 系統(WHIPS)、安全帶系統、方向機柱潰縮裝置等 各式乘員安全技術,已被廣泛地應用車輛設計上, 使得先進國家在車輛數與每年行車里程數不斷增加 的情況下(1),傷亡比率逐年降低,過去30年改善情 況如表1.所示。

表1. IRTAD國際道路交通和事故數據資料庫的統計資料圖表

財團法人車輛研究測試中心 施尚融

然而行人的碰撞保護研究,卻沒有受到同等重 視,相較於車內乘員傷亡人數的逐年減少,車外行 人傷亡比率,卻逐年增加;由道路完備的先進國家 相關統計資料顯示,車內乘員與易受傷害的道路使 用者(如行人、摩托車騎士、腳踏車騎士),兩者 間的死亡佔比大約是3:1;而混合性交通的國家 (如中國等),此傷亡比例可高達1:3;以實際交通 事故統計進行分析,行人死亡之佔比,在歐洲約 12%,美國爲11%,而中國則超過50%。因此行人 碰撞安全研究的課題已逐漸受到全球各國的重視。

爲了進一步保護行人的用路安全,歐洲和日本 政府已於2003年起針對行人碰撞安全保護,要求車 廠改進其車輛設計,進而保護易受傷害的道路使用 者;中國在2006年7月1日公佈《汽車側面碰撞的乘 員保護》和《乘用車後碰撞燃油系統安全要求》兩 項強制性國家標準後,亦表示已經開始研究適合中 國的行人碰撞規範,預計於2009年後有關行人保護 的強制標準也將陸續出爐。

以下內容將針對各國行人碰撞保護的研究發 展、法規規範與測試方法加以說明概述。

一、行人碰撞保護研究發展

行人碰撞安全保護的研究,起源於1970~1980 年初,歐盟會員國在其『歐洲車輛安全促進委員會 European Enhanced Vehicle-safety Committee (EEVC) 』中設立了EEVS WG10的工作小組,專責研擬有 關行人碰撞保護的試驗方法,該小組利用屍體與 『混合站立假人』(使用Hybrid III假人以及直立骨盆 和SID假人組合)進行比對試驗,模擬行人與車體 碰撞過程中,行人脊椎骨、頸部的運動模式,進而 獲得其傷害指數;但根據1994年EEVC WG10報告 指出(2),以『混合站立假人』進行之試驗結果,其 結果變異性過大,無法以『混合站立假人』試驗模 式,訂定出標準試驗方法。但整個的研究過程發 現,行人易受傷部位,主要分佈於膝蓋、上腿部與 頭部等,因此據此提出一系列撞擊模擬器(參考圖 1.)之試驗提案,分別為:

- ·下腿部模擬器(含膝關節) 衝擊保險桿
- 上腿部模擬器衝擊引擎蓋前緣
- · 兒童、成人頭部模擬器衝擊引擎蓋

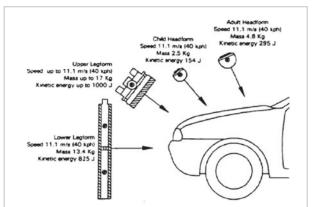


圖1. EEVC WG10小組提出之撞擊模擬器及其測試位置

EEVC WG10小組所提出的撞擊模擬器,其構 造與真人之特性差異大而受到質疑,且其試驗方 法,限制了車輛之造型,更遭受汽車製造廠普遍批 評,認爲該提案無法滿足現今車輛設計的需求。這 促使歐盟另外成立EEVC WG17的工作小組,重新 評估行人碰撞試驗方法、碰撞試驗屍體的原始數據 以及撞擊模擬器與真實人體之相似特性,並參照新 車外型之設計趨勢,重新調和EEVC WG10工作小 組所做之提案,於1998年提出新的行人碰撞保護測 試建議案(3)。此提案保留了EEVC WG10的基本試 驗方法,並新增SUV和4×4車輛的上腿部與保險桿 試驗,主要是針對保險桿較高的車輛,以上腿部代 替下腿部模擬器進行保險桿衝擊測試。圖2.為不同 車輛外型其行人撞擊模擬器測試位置的示意圖。



圖2. EEVC WG17針對不同車型與衝擊測試位置的示意圖

由車輛與行人碰撞過程(圖3-a.)與的電腦數值模 擬影像(圖3-b.)顯示,當車輛與行人發生碰撞事件 時,最先接觸的部位是下腿部、膝蓋與車輛保險桿 的碰撞傷害,接著頭部會撞擊引擎蓋與前擋風玻璃 等。EEVC WG17工作小組針對不同的碰撞過程, 提出不同撞擊模擬器與其試驗方法,以下將概略說 明:

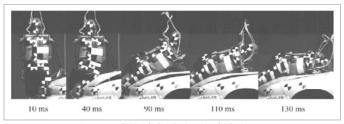


圖3-a. 實際車輛與行人碰撞過程

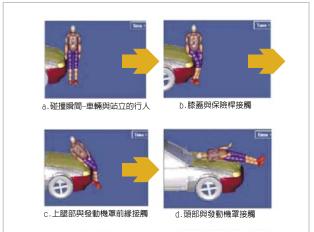


圖3-b. 電腦模擬車輛與行人碰撞過程

(一) 下腿部模擬器

行人與車輛碰撞事故中,人體常見之下腿部傷 害多爲膝蓋韌帶撕裂、損傷,或膝蓋本身發生骨 折,造成長期或永久性傷殘,因此EEVC WG17工 作小組提出的下腿部模擬器,主要就針對常見的傷 害模式進行評估,圖4.爲根據下腿部常見三種傷害 類型而所做的物理量測。

圖4. 下腿部常見三種傷害類型之物理量測

此下腿部撞擊模擬器,主要由鋼製大腿骨和鋁 製小腿骨組成,兩者間在由塑性可變形鋼製膝蓋韌 帶相連接。在大、小腿骨與膝蓋韌帶的部分,各自 連接著剪切位移計,分別記錄大、小腿骨與膝蓋間 之剪切位移量。腿骨外部則包覆一層25毫米厚的 Confor™泡沫材料,模擬腿部的肌肉特性,其最外 層再包覆一層橡膠,用於模擬皮膚特性,其中 Confor™泡沫材料和韌帶等材料,需於每次試驗前 更換新品。下腿部模擬器構造如圖5.所示:

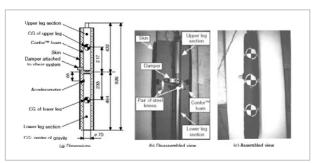


圖5. (a) EEVC WG17下腿部撞擊模擬器的構造圖

- (b) TRL公司製造的下腿部撞擊模擬器內部構造
- (c) TRL公司製造的下腿部撞擊模擬器外觀

(二) 上腿部模擬器

行人碰撞發生時,上腿部骨折也是常見的傷害 現象。發生上腿部骨折,其主要原因是骨骼承受外 部的的剪切力,也就是於大腿骨處有一外部的彎曲 力矩,上腿部撞擊模擬器就是設計來評估這類傷 害。圖6.為上腿部撞擊模擬器所做的物理量測。

圖6. 上腿骨撞擊模擬器所量測的物理量

此上腿部撞擊模擬器的構造,主要由直徑50毫 米鋼管,頂部和底部兩端裝置壓力感測元件連接構 成撞擊模擬器主體。並在鋼管後面裝有三個應變規 記錄彎曲力矩。鋼管的外部包覆50毫米厚的 Confor(tm)泡沫材料層來模擬大腿肌肉,最外層再 由薄薄的橡膠表層模擬皮膚。上腿部撞擊模擬器構 造如圖7.所示:

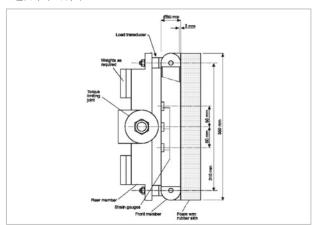


圖7.: EEVC WG17上腿部撞擊模擬器的構造圖

(三)頭部模擬器

行人交通事故中,致命傷害主因爲頭骨骨折或 大腦遭受大力撞擊所致。EEVC WG17因此針對不 同年紀的人體體型,設計了不同規格的撞擊模擬器 與試驗規範,主要有三種不同重量的頭部撞擊模擬 器。

- · 2.5公斤重的兒童頭部撞擊模擬器
- · 3.5公斤重的兒童/矮小成人頭部撞擊模擬器
- · 4.8公斤重的成人頭部撞擊模擬器

這三類的頭部撞擊模擬器之間構造相類似,都 是由鋁質頭骨組成,其重心裝置著三軸向加速規, 並覆蓋著乙烯塑膠表層模擬皮膚特性,如圖8.所 示。

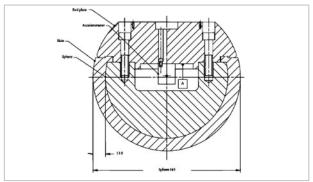


圖8. EEVC WG17 頭部模型撞擊模擬器的構造圖

二、行人碰撞相關規範與測試方法

各國對於保護『車輛外部』行人安全的研究不 遺餘力,早期歐洲汽車製造商在關注行人碰撞安全 議題時,曾考慮到一些車輛設計改進,雖不如 EEVC WG17的提案詳盡,但車廠的提早對應,可

以先一步拯救生命,增加用路者的安全性,歐洲汽 車製造商提議歐洲汽車製造商協會(ACEA)、日本 汽車製造商協會(JAMA)和韓國汽車製造商協會 (KAMA)的所有成員共同簽署約定,分兩個階段 提高行人保護標準,這就是2001年歐洲汽車製造商 對於行人碰撞安全性的自我行動方案,其重點在於 可作爲法規實施的備選方案及其提早實施之時程。

在歐洲車輛製造商自我行動方案實施不久,歐 洲聯盟(EU)的權力機關-歐洲議會(EC),爲大 幅度降低行人的死傷人數,決定要對行人的碰撞安 全,制定專門的技術指令,因此歐洲議會於2003年 11月17日制定並發布『指令2003/102/EC-與機動 車輛發生碰撞前和發生碰撞時對行人和其他易受傷 害的道路使用者的保護』,正式立法保護行人碰撞 安全。

在歐洲除了法規提案外,歐洲的新車評估計畫 (EuroNCAP),也制訂了一套行人保護規範,參見 www.euroncap.com網站,有別於乘員安全保護評級 的星級公佈於眾。

除了歐洲以外,日本國土運輸省(MLIT)於2004 年亦頒布了『步行者頭部保護基準』,規定新車要 具備行人保護裝置設計;澳大利亞對此議題也極為 關注,並將其納入了新車評估計畫(ANCAP)之中; ISO國際標準組織也在制訂行人保護的標準,環顧 各國規範,其中以歐洲法規提案,較爲詳盡。

以下將介紹各國行人碰撞保護規範與測試方法

概述,主要有歐洲議會(EC)所提出的 2003/102/EC 行人碰撞安全技術指令,歐洲新車評估計畫 European New Car Assessment Programmer (EuroNCAP) 的行人碰撞安全保護測試,以及日本 的行人頭部保護性能試驗。其中以歐洲的 2003/102/EC技術指令與EuroNCAP的測試方法相類 似,包含頭部衝擊試驗、下腿部衝擊試驗與上腿部 衝擊試驗,將一併討論比較。而日本的測試方法只 針對行人頭部防護性能進行測試與規範,將獨立介 紹此規範。

(一) 歐洲2003/102/EC技術指令與EuroNCAP行人碰 撞安全保護測試方法

歐洲2003/102/EC技術指令規定,所有車重不 超過2.5噸的M1類車輛以及由M1類車輛衍生出的N1 類車輛,都需符合此規範;此技術指令分兩個階段 執行,2005年10月1日開始實施第一階段的技術指 令,規範所有的新車型均需滿足2003/102/EC技術 指令,而第二階段將於2010年9月1日實行,規範所 有新生產的車輛,都需符合技術指令。相較於官方 的2003/102/EC技術指令,創始於1997年的 EuroNCAP撞擊測試,則是以消費者角度,針對汽 車之安全性進行評鑑的非官方組織,並將其所獲得 的車輛評鑑公布於網頁上,供大眾做爲購車參考, EuroNCAP除了車內乘員保護性能的評鑑項目外, 亦於2002年1月增設的對行人保護的測試,促使汽 車生產商在設計上,多地照顧到行人的安全問題。

關於歐洲2003/102/EC技術指令與EuroNCAP測 試規範,均採用由歐盟EEVC WG17工作小組提出 的測試方法,於此一併介紹比較,兩者皆規定車輛 可進行下列測試

- (1) 下腿部與車輛保險桿的衝擊測試:
- (2) 上腿部與保險桿的衝擊測試(選擇性測試,適 用於SUV等高底盤車輛)
- (3) 上腿部與車輛引擎蓋前端邊緣的衝擊測試
- (4) 兒童頭部與車輛引擎蓋的衝擊測試
- (5) 成人頭部與車輛引擎蓋和擋風玻璃的衝擊測 試

受測車根據不同的零部件,如保險桿裝置、引 擎蓋前端邊緣與前擋風玻璃等,將會有不同的測試 方法,統整如下:

1. 保險桿裝置

在2003/102/EC技術指令第一階段、第二 階段和EuroNCAP中,採用下腿部撞擊模擬器 或選擇性改用上腿部撞擊模擬器,以40公里/小 時的速度水平射向車輛前端保險桿裝置(如圖 9.),量測撞擊模擬器所記錄的各項物理量測, 類比轉換成人體的傷害指數。2003/102/EC技術 指令在不同階段有不同的傷害指數極限規範, 例如下腿部加速度極限值,第一階段不可超過 200g,到第二階段則更嚴苛的要求在150g以 下,而EuroNCAP則是將傷害指數大小換算成 星等給分,小於150g則給予2分綠色標誌,大 於200g則給予0分紅色標誌,150g至200g之間 則按比例換算成0.01到1.99的分數並給予黃色 標誌,分類表示此項目的在行人保護性能上的 效果。

圖9. 保險桿衝擊測試

2. 引擎蓋前端邊緣 (bonnet leading edge)

在2003/102/EC技術指令第一階段、第二 階段和EuroNCAP中,上腿部撞擊模擬器同樣 以40公里/小時的速度撞擊引擎蓋前端邊緣三次 (圖10.),一次在中間的1/3區域,另外兩次分 別在兩側的1/3區域;然而,此項撞擊測試,在

第一階段屬於選擇性測試,測試結果僅供研究 單位進行資料蒐集的研究用途,到了第二階段 後,測試結果要求需符合傷害指數極限值,上 腿部受力負荷要小於5.0 kN,彎曲力矩要小於 300 Nm °

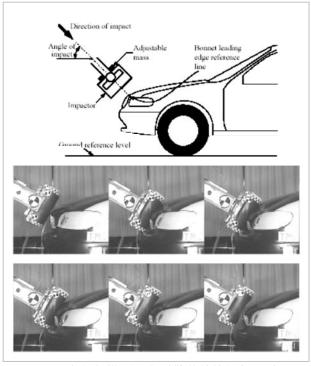


圖10. 上腿部模擬器與引擎蓋前緣衝擊測試

3. 引擎蓋和前擋風玻璃

在2003/102/EC技術指令第一階段要求以 3.5公斤兒童/矮小成人頭部撞擊模擬器,以35 公里/小時的速度作用於引擎蓋表面,並對引擎 蓋不同區域規範不同的頭部傷害指數(HPC)。 在引擎蓋前1/3區域 HPC需小於1000,後2/3區 域 HPC 需小於2000;另外,再使用4.8公斤成

人頭部撞擊模擬器,以35公里/小時的碰撞速 度,作用於車輛前方擋風玻璃區域,所獲得的 頭部傷害指數,則僅做參考研究使用。

在2003/102/EC技術指令第二階段和 EuroNCAP的衝擊測試,改採2.5公斤兒童頭部 撞擊模擬器作用於引擎蓋前緣區域,以及採用 4.8公斤成人頭部撞擊模擬器,用於引擎蓋後緣 區域,取代第一階段的3.5公斤頭部撞擊模擬 器;衝擊測試的速度則提高至40公里/小時,且 第二階段的頭部傷害指數極限値將更加嚴苛, 全區域 HPC皆需要小於1000。而EuroNCAP對 於測試結果,則參考2003/102/EC技術指令第二 階段的傷害指數,利用比例圖來決定給分與標 誌,HPC小於1000給予2分綠色標誌,HPC介 於1000到1350之間,則比例換算成0.01到1.99 的分數與黃色標誌,HPC高於1350則給予0分 與紅色標誌。

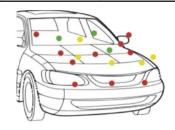
(二)歐洲行人碰撞保護測試規範

行人碰撞保護試驗結果,針對不同的法規實施 階段則有不同的要求。其間主要差別在於傷害指數 極限值與測試條件要求不同,例如歐洲法規 2003/102/EC技術指令第二階段的極限值規範就比 第一階段還要嚴苛,表2.綜合整理歐洲 2003/102/EC技術指令各階段間的測試要求。

表2. 歐洲2003/102/EC技術指令各階段間測試要求整 理比較表

2003/102/EC技術指令					
第一階段(2005年10月1日起)	第二階段(2009年9月1日起)				
第一階段	第二階段				
頭部與車輛引擎蓋: 3.5公斤重兒童/矮小成人頭部撞擊模擬器 撞擊速度:35公里/小時 傷害指數限值:前1/3區域 HPC < 1000 後2/3區域 HPC < 2000	頭部與車輛引擎蓋: 2.5公斤兒童與4.8公斤成人頭部撞擊模擬器 撞擊速度:40公里/小時 傷害指數限值:全區域 HPC < 1000				
下腿部與車輛保險桿: 撞擊速度:40公里/小時 傷害指數限值:小腿骨加速度 < 200 g 彎曲角度 < 21° 剪切位移 < 6 mm	下腿部與車輛保險桿: 撞擊速度:40公里/小時 傷害指數限值:小腿骨加速度 < 150 g 彎曲角度 < 15° 剪切位移 < 6mm				
上腿部與車輛保險桿(選擇性): 撞擊速度:40公里/小時 傷害指數限值:受力負荷 < 7.5 kN 彎曲力矩 < 510 Nm	上腿部與車輛保險桿和引擎蓋前緣: 撞擊速度:40公里/小時 傷害指數限值:受力負荷 < 5.0 kN 彎曲力矩 < 300 Nm				

(三) EuroNCAP星等評分


EuroNCAP將各傷害指數利用比例圖進行分數 換算,使各個製造商能夠確定其得分目標,並給予 星等指標。目前,EuroNCAP在評估行人保護時, 總共執行了18次的衝擊測試,包含6次兒童頭部撞 擊模擬器衝擊測試、6次成人撞擊模擬器衝擊測 試、3次上腿部撞擊模擬器衝擊測試與3次下腿部 (或選擇性上腿部)撞擊模擬器衝擊測試。

每次試驗的傷害指數應用比例關係,轉換成0 至2分之分數,表3.爲EuroNCAP星等評分表整理, 例如,當頭部撞擊模擬器獲得的HPC值為1350或更

高時,得分爲0分;HPC爲1000或更低時,得分爲2 分。介於這兩個限值之間的得分參照線性比例圖 (如圖11.所示)。每次試驗最高可以獲得2分,18次 測試後的總分最高爲36分,各自對應到0顆至4顆星 等如圖12.所示。

表3.: EuroNCAP行人保護星等評分表與表示法

	EuroNCAP 星等評分						
顏色	得分	頭部與引擎蓋	上腿部與車輛引擎蓋前緣	下腿部與保險桿	上腿部與保險桿		
紅	0分	HPC > 1350	受力負荷 > 6.0 kN 彎曲力矩 > 380 Nm	小腿骨加速度 > 200 g 彎曲角度 > 20° 剪切位移 > 8 mm	受力負荷 > 6.0 kN 彎曲力矩 > 380 Nm		
黃	0.01- 1.99 分	1000 <hpc<1350< th=""><th>5.0kN < 受力負荷 < 6.0 kN 300 Nm < 彎曲力矩 < 380 Nm</th><th>150g < 小腿骨加速度 < 200g 15° < 彎曲角度 < 20° 6mm < 剪切位移 < 8mm</th><th>5.0 kN < 受力負荷 < 6.0 kN 300 Nm <彎曲力矩< 380 Nm</th></hpc<1350<>	5.0kN < 受力負荷 < 6.0 kN 300 Nm < 彎曲力矩 < 380 Nm	150g < 小腿骨加速度 < 200g 15° < 彎曲角度 < 20° 6mm < 剪切位移 < 8mm	5.0 kN < 受力負荷 < 6.0 kN 300 Nm <彎曲力矩< 380 Nm		
緑	2分	HPC < 1000	受力負荷 < 5.0 kN 彎曲力矩 < 300 Nm	小腿骨加速度 < 150 g 彎曲角度 < 15° 剪切位移 < 6 mm	受力負荷 < 5.0 kN 彎曲力矩 < 300 Nm		

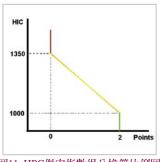


圖11. HPC傷害指數得分換算比例圖

28-36 points = $\star \star \star \star$ 19-27 points = $\star\star\star$ 10-18 points = $\bigstar \bigstar$ 1-9 points = ★ 0 points =

圖12. 總分與行人保護星等關係

(四)日本行人頭部保護性能試驗

日本國土運輸省(MLIT)2005年9月起實施行 人頭部與引擎蓋碰撞保護法規,其基本原理與歐洲 頭部撞擊模擬器的測試方法類似,皆是射出半球形 的頭部模型撞擊車體,然而其撞擊模擬器重量、碰 撞區域、碰撞速度與角度和模擬器構造,仍有些許 差異說明如下:

1. 頭部模擬器重量

基本差別在於日 本法規中,採用3.5公 斤兒童頭部和4.5公斤 成人頭部撞擊模擬器 (圖13.)撞擊引擎蓋測

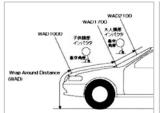


圖13. 日本 4.5公斤成人頭部 撞擊模擬器

試;相較於2003/102/EC技術指令第一階段提案 只使用3.5公斤頭部應用於引擎蓋碰撞,而在 2003/102/EC技術指令第二階段和EuroNCAP中 則使用2.5公斤兒童頭部和4.8公斤成人頭部應 用於整個引擎蓋碰撞。

2. 碰撞區域比較

碰撞區域的位置和大小也有差異。參考圖 14.、圖15.與表4.,引擎蓋上以一定的長度,從 地面到保險桿並沿著引擎蓋表面的形狀標出的 碰撞區域邊線,稱爲環繞距離(WAD),藉此 定義出不同的碰撞區域,其比較如下表3.。

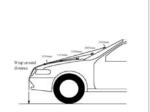


圖14. 日本法規的碰撞區域分隔 圖15. 歐洲法規的碰撞區域分隔

表4. 歐、日法規頭部模擬器碰撞區域的差異

法規	成人區域的上緣	兒童區域的上緣/ 成人區域的下緣	兒童區域的下緣
歐洲第一階段	_	2100mm 或引擎蓋最上緣	1000 mm
歐洲第二階段	2100mm 或引擎蓋最上緣	1500 mm	1000 mm
EuroNCAP 2100 mm		1500 mm	1000 mm
日本法規 2100 mm		1700 mm	1000 mm

3. 碰撞角度與速度

日本法規以引擎蓋前緣高度將車子分爲轎 車、SUV車、單廂式車三類,如表5.所示。根 據不同的車型,則有不一樣的測試條件,其整 理如表5.所示。與歐洲的法規相比,日本的頭 部模擬器撞擊速度皆為35公里/小時,但在歐洲 法規則是第一階段同樣皆爲35公里/小時,但第 二階段則是提升到40公里/小時。歐洲法規的撞 擊角度爲50度,小於日本法規所規定的撞擊角 度,表6.為日本法規測試衝擊條件。

表5. 日本法規車輛類型分類

	車型	定義
第一類	轎車	引擎蓋前緣高度 < 835毫米的車輛
第二類	SUV車	引擎蓋前緣高度 ≧ 835毫米的車輛
第三類	單廂式車	引擎蓋角度 ≧ 30°的車輛

表6. 日本法規測試衝擊條件

4. 頭部傷害指數極限值規範

HPC值計算方法與歐洲方法相同,傷害指 數極限值規範則與歐洲法規第一階段相同,引 擎蓋的前三分之一區域HPC需小於1000,另外 後三分之二區域HPC需小於2000。

(五)日本與歐洲測試方法之差異

日本頭部撞擊模擬器構造與歐洲撞擊模擬器不 同,且碰撞速度不同,經由計算比較兩法規的撞擊 模擬器的重量與速度,歐洲、日本之4.5公斤成人頭 部撞擊模擬器在碰撞時產生178焦耳的能量,而日 本兒童頭部撞擊模擬器在碰撞時產生138焦耳的能 量,但在歐洲第一階段要求中3.5公斤兒童/矮小成 人頭部撞擊模擬器?生165焦耳的能量,兩者相較減 少了27焦耳。而在碰撞的角度設定上,歐洲法規皆 以50°角度撞擊車體,大部分屬於滑動碰撞,但日

本法規有些條件是以大於50°碰撞車體,這將導致 與引擎蓋產生更加直接的碰撞,而不是滑動碰撞, 因此測試條件比歐洲法規更加嚴苛。

三、車輛行人防護系統之演進

目前,歐洲的一些機構,以主動安全設計來提 高行人保護,從而使車輛設計不會產生根本變化。 例如加裝引擎蓋和保險桿中的空氣囊,或者提高引 擎蓋高度,從而增加頭部撞擊模擬器之能量緩衝空 間;行人防護系統之改進可分爲:

(一) 引擎蓋機械系統

引擎蓋機械系統,如圖17.所示,能夠在汽車 發生碰撞時迅速鼓起,使得撞擊而來的人體不是硬 碰硬,而是碰撞在柔性與圓滑的表面上,減少了行 人受傷的可能。據研究顯示,如果引擎、電池和其 它部件有寬裕的空間,或引擎蓋在碰撞過程中能開 啓,這時對行人造成的傷害就會明顯減少;如果引 擎蓋的前端可再向後移動,那麼撞擊造成的損傷可 以大大地降低。

圖17. 引擎蓋機械系統

(二)保險桿材料改良

在碰撞中,主要接觸區前保險桿也可進行改 良,可採用高密度泡沫材料和新結構設計,用於控 制對腿部的衝擊過程,減小撞擊力量,從而有效地 保障行人的膝、腿免受嚴重傷害。

(三) 行人空氣囊系統

行人空氣囊的設計,更進一步避免人體直接撞 擊汽車的引擎蓋與前擋風玻璃,避免在猛烈碰撞 下,行人受到更大的傷害。氣囊的安裝設計位置有 兩處,一是引擎蓋前緣氣囊,一是前圍空氣囊,兩 者的配合使用可減少行人傷亡事故。

引擎蓋前緣氣囊由保險桿上方緊靠引擎蓋處展 開。於車體感測到碰撞時,由一個碰撞預警感測器 觸發,在50至75微秒內完成充氣,保持充氣狀態時 間可達數秒鐘;氣囊的折疊模式和斷面設計保證了 氣囊展開時,能與汽車前端的輪廓相合,以確保兒 童頭部和成人腿部的安全。

前圍空氣囊系統,如圖18.所示,主要作用則是 提供行人二次碰撞的保護,防止行人被用到引擎蓋上 方後部與前擋風玻璃間;該系統包括兩個氣囊,各由 汽車中心線向兩側的A柱延伸。氣囊由碰撞預警感測 器探測到行人與保險桿發生初始碰撞後觸發,在行人 翻到引擎蓋上方滾向前擋風玻璃這段時間內,氣囊將 完成充氣,整個氣囊沿前擋風玻璃底部,完全覆蓋左 右A柱之間的汽車寬度,不僅能蓋住前擋風玻璃底 部,還可蓋住雨刷與引擎蓋支座等致命點。

圖18. 前圍空氣囊系統

四、結論

最近30年內,歐洲等國在行人事故和傷害原因 方面研究建立了豐富資料,促進了上述法規、技術 指令和 EuroNCAP在行人碰撞保護的發展。這使得 歐盟國家在降低道路交通事故獲得重大的成效,並 也促使車輛製造廠,將車輛安全的焦點由車內乘員 轉向車外行人的保護,提高車輛設計在行人保護系 統的研究。舉例來說,根據EuroNCAP 最近5年的 統計資料已經證實,乘客安全保護方面,目前大部 分車輛平均獲得了4星等,1998年則?2或3星等; 而在行人保護星等方面,亦有新車已經達到4星等 之最高評價。

過去各國的行人保護系統研究,主要是偏重在 車輛被動安全設計。如引擎蓋機械系統、行人空氣 囊與保險桿材料之改良等被動安全設計,仍然基於 行人碰撞時減緩傷害,而不是避免碰撞。而未來的 行人安全系統設計,將更進一步到主動式的行人安

全防護的研究,目前已經有車廠著手於先進智慧型 車輛之研究,在事故發生以前就及時通知駕駛注意 行車狀況,避免車禍的發生,將事故的損傷降到最 小程度。

我國政府近幾年來致力於推動國內車廠注重車 內乘員保護設計,並訂定了相關的乘員保護法規, 反觀行人碰撞保護的研究能屬一片空白,而台灣亦 屬於混合性交通,弱勢的道路使用者安全也該受到 重視。消費者在選擇車輛除了考量乘員安全與舒適 性外,亦應考慮車輛對於行人安全保護之設計,降 低交通事故的意外死亡,多一分的用心,共同爲用 路人帶來安全的保障。

五、參考文獻:

- (1) IRTAD 國際道路交通和事故數據資料庫的統計 資料 圖表 http://www.bast.de/htdocs/fachthemen.irtad
- (2) EUROPEAN EXPERIMENTAL VEHICLES
 COMMITTEE: WORKING GROUP 10 ON
 PEDESTRIAN PROTECTION (1994). Proposals
 for methods to evaluate pedestrian protection for
 passenger cars: Final Report. EEVC, November
 1994.
- (3) EEVC Working Group 17 Report Improved Test Methods To Evaluate Pedestrian Protection Afforded By Passenger Cars (December 1998 with September 2002 updates)

