CRASH TEST LAB 驗室開幕啓用特別報導

財團法人車輛研究測試中心 / 孟億里 / 許文賢 / 李肇豪 / 吳建勳

一、前言

實車碰撞技術爲確認車輛整體安全性之重 要技術項目之一、無論是零組件廠設計開發重 要車輛安全零組件、整車廠設計開發新車、學 術與研究單位研究行車安全、政府單位研訂與 執行車輛安全法規政策,以及社會大眾團體掌 握與運用車輛安全觀念與資訊等各項工作,皆 有賴於國內實車碰撞技術能量之建置完成,方 能順利有效實施。

車輛研究測試中心(以下簡稱ARTC)於民國 90年起即展開國內首座「實車碰撞實驗室」之 初步規劃,承蒙經濟部技術處之大力支持,以 及產、學、研各界相關單位與人士之熱心協 助,促成以科技專案投注ARTC之整體實驗室興 建,於91年完成實車碰撞實驗室之細部規劃 後,92年開始建置各項重要之實車碰撞檢測系 統,以及安排檢測人員赴國外學習碰撞測試與 人偶校正等各項技術,93年亦在科專先期研究 計畫支持下,建立初步之實車碰撞電腦輔助工 程(Computer-Aided Engineering,以下簡稱CAE) 分析技術,以期未來能以所建置之實車碰撞技 術爲基礎,結合國內產、官、學、研各界之車 輛安全技術能量,共同提供國內一個完善之車 輛安全研究發展基礎環境。

93年底,國內首座「實車碰撞實驗室」終 於展現在國人面前,期待透過國內產、官、 學、研各界的充分運用,日後能對於提昇國內 車輛產品安全之研發以及增進社會大眾行車安 全做出豐富且重要的貢獻。本文將就國內實車 碰撞技術包括測試與CAE分析技術以及未來之 發展規劃加以簡要介紹。

二、實車碰撞測試技術介紹

實車碰撞測試技術主要分為兩大類,一為 法規檢測技術,例如依據歐洲法規之前面偏 置、側面與後面碰撞,美規前面全寬及角度碰 撞與中國大陸之前面全寬碰撞等法規檢測技 術。一爲執行車輛產業或政府機關委託之研究

測試技術,如以高速撞擊或進行不同碰撞型式 之研究、另外包括追加車體內部或碰撞人偶各 部位之碰撞行爲分析,或進行事故重建模擬 等。以下將針對實車碰撞測試項目、實車碰撞 測試設備以及實車碰撞測試方法三方面,概要 介紹實車碰撞測試技術,說明如下。

(一) 實車碰撞測試項目

實車碰撞測試之基本項目包括前面固定壁 碰撞、側面台車碰撞、後面台車碰撞、靜、動 態翻滾及全車碰撞模擬測試(HYGE SLED)等, 國外已行之多年,相關之測試技術亦皆已發展 成熟,至於進一步提昇車輛與人員碰撞安全之 各項先進研究性測試技術,則仍在持續研究發 展中。目前本實驗室已建立之實車碰撞測試項 目包括:

- 1. 歐規ECE R94之前面碰撞測試(偏置碰撞)。
- 2. 中國大陸法規CMVDR294之前面碰撞測試 (全寬碰撞)。
- 3. 美規FMVSS 208之前面碰撞測試(含角度碰 撞)。
- 4. 歐規ECE R95之側面碰撞測試。
- 5. 歐規ECE R34之後面碰撞測試。
- 6. 歐規ECE R16、ECE R44波形之零組件碰撞 模擬測試。
- 7. 前撞人偶與側撞人偶之校正測試。
- 8. 車對車正撞測試。

9. 車對車側撞測試。

(二) 實車碰撞測試設備

ARTC「實車碰撞實驗室」主要涵蓋兩大系 統,一爲「實車碰撞主系統」所涵蓋之設備包 括碰撞主系統、零組件碰撞模組、燈光系統、 人偶與感測系統、高速攝影系統、資料擷取系 統及尺度量測系統等;另一為「零組件碰撞模 擬系統」,採分軌設計規劃(如圖2.1,2.2),未來 提供產業測試服務時,將更具機動性。

碰撞主系統可曳引之車重達5公噸,可執行 之碰撞速度在5公噸時可達80 km/hr;在2公噸時 可達100 km/hr;速度之控制精度爲±0.5 km/hr °

在零組件碰撞模組方面,因近年來,安全 系統被要求更精密與完善,空氣囊已成爲汽車 標準裝備,爲考量側面碰撞之普遍需求,零組 件碰撞模組須能提供「高頻」之測試能量,因 此,本實驗室採用如圖2.3,2.4之「伺服加速模 擬 (SERVO-ACCELERATOR SLED SYSTEM 簡寫SASS)」系統;其功能除了可產生法規之 檢測波形外,更可直接透過電腦設定高頻之波 形(可達400Hz)供研究測試用,同時本系統之承 載能量可達3公噸(可將測試車直接固定於SLED 上),將足以提供產業於研發階段進行接近實車 之碰撞模擬檢測,大幅降低研發成本。有關 ARTC實驗室採用之設備規格功能及應用領域,

摘要說明如表2.1。

(三)實車碰撞測試方法(以歐規前方碰撞爲例)

1. 設定測試條件

測試車之碰撞方向與碰撞固定壁呈90 度之垂直方向,朝正面撞擊架設於固定壁 前方之蜂槽鋁(ECER94法規用),撞擊速度 為56-0+1km/h。車身寬度須和方向機柱側 與固定壁上之蜂槽鋁重疊,重疊部份為40% ±20mm。ARTC之設備可將小型車曳引至 100 km/hr,加速距離爲196公尺,於碰撞壁 前0.6公尺自由釋放,曳引系統採雙向曳 引,使用三相AC400~480VAC之600HP DC 馬達,故已具備高速碰撞之研究能量。

2. 整備測試車輛

測試車須爲連續生產之車輛,且其車 內之配備須爲標準配備。測試進行時,爲 了安全起見,燃油與引擎油與其它油料製 品均以等重之水替代,一般法規檢測,以 90%等重之水取代,並以不拆除車輛結構件 為原則。在車上允許超過25 kg的量測設 備,但在其他部位需減輕其重量,且必須 不影響其測試結果。車上之量測設備,不 可使輪軸之負載比例超過5%,或每一輪軸 之荷重變異超過20 kg。

方向盤若可調整, 必須調至車廠設定 之位置,否則調至可調整範圍之中間位 置。測試時,方向盤須處於直進之方位, 曳引結束時方向盤須爲可自由轉動狀態。

排檔排至空檔, 且腳踏板須在正常未 踩下位置,若爲可調整式,則須調至中間 位置或製造者所指定之位置。可移動之車 窗須關閉,但爲測試量測需要,可與製造 者協調將車窗玻璃降下。車門須關閉但不 鎖住。若有可開啓式或可拆式車頂,原則 上須將車頂裝上且關閉,但若爲測試量測 需要,與製造者協調同意後則可以開啓。 遮陽板須爲收起的位置。車內後視鏡須爲 正常使用位置。扶手若爲可調式則須爲最 低位置,但若影響人偶置放位置除外。

座椅位置調整方面,頭枕須調至最高位 置,前座椅調至其前後可移動之中間位置, 若無法調至剛好中間,則調至最接近中間之 卡榫位置,椅墊高度則調至製造者設定之位 置。座椅椅背調至製造者建議之常用角度, 若無建議值則調至垂直向後25°位置。後座 若可調整須調至最後位置。

測試人偶之整備乃採HYBRID III五十 百分位人偶,前座位置各置放一具人偶。 人偶須穿著FMVSS 208中78051-292及293規 定之棉質短袖衫與及膝短褲或與其相當 者。另量測儀器及人偶,需於測試前,靜 置於室溫19 ℃至22 ℃間,使量測儀器及人

偶之溫度處於穩態。

3. 記錄碰撞過程

爲記錄車輛碰撞之車體變形過程,測 試車須進行攝影部位之標線與噴漆裝飾以 增加高速攝影之判讀,ARTC規劃之數位式 高速攝影系統可運用至12個攝影鏡頭,鏡 頭類別包括F-mount, 20-70 mm, F2.8四個 與分離式攝影機可接四個鏡頭等,實驗室 亦規劃底部攝影機坑與燈光系統設計,故 可進行車體底部攝影,同時車輛中心採用 專業化之移動式燈光,配合On-Board耐衝 擊攝影機可進行車輛內部攝影及影像分 析,攝影速度在高解析度狀況下,通常設 定在1,000 fps以上(法規要求500 fps以上); 高速攝影系統位於左右兩側之側視位置, 可記錄車輛之運動行為,其中一部架設於 車輛碰撞軌道區上方,以利觀測車體之偏 移角度。一部架設於車輛碰撞軌道區下方 之攝影機坑,以利觀測車輛底盤之變形行 為,若配合TEMA影像分析軟體,可進行六 個自由度影像分析,故可解析車體變形之 時間變化與各軸向之旋轉角度等。以下簡 要說明碰撞過程中之影片分析方法。

在記錄碰撞過程之運動行為,通常定 義前保險桿與碰撞壁面之接觸瞬間爲0 ms。並計算前輪碰撞固定壁面發生之時間

點,且量測車體之前端(Front end)結構發生 變形量。當碰撞速度下降至接近0時,代表 最大變形量之發生時間點,並加以記錄 之。一般測試中,車體在產生最大變形 時,其尾部幾乎往上舉起,即所稱之 Pitching角度。分析軟體可計算出最大之旋 轉角度。而車體碰撞過程之動態位移計算 (即長度方向之碰撞變形量)係藉由黏貼於車 輛末端之靶心標誌(Target Mark)進行分析, 由於車輛因旋轉而產生顯著動態位移,故 須對Pitch角進行補償方符合實際值;藉由 影像分析技術,相信可提供車廠或研究機 關進行車體結構改善之重要參考依據。

4. 量測車體變形量

車體變形量在車體改良或事故分析中 是極重要參數,爲求更高準確之車體永久 變形量,除了透過軟體分析外,更可藉由 三次元量測系統分別對車體碰撞前與碰撞 後進行不同位置之量測,量測位置主要包 含如下:包括保險桿之高度,引擎蓋高 度、前外圍邊界高度,前擋風玻璃週邊。 ARTC購置之三次元量測系統,測頭最大移 動範圍可達3.084 mm, 精度達0.025 mm, 可進行車體絕對座標與相對座標之量測轉 換,可求出車體之相關變形量。

5. 判讀測試結果

車輛經過碰撞後,車體結構設計則藉 由適當變形以吸收撞擊能量,而在車輛被 動安全設計方面,則視各項安全系統能否 發揮適度之功用加以判斷,如空氣囊之作 動行為、安全帶系統之瞬間拉伸行為、汽 車座椅固定點強度、車體內裝件是否脫落 造成乘員二次傷害等特性。

ARTC規劃之資料擷取系統(TDAS-G5) 與碰撞人偶感測器系統則是針對乘員各項 傷害指數進行定量分析,另ARTC規劃之高 解析度(1200X1600)攝影機,配合TEMA影 像分析軟體與靜態翻滾試驗機,可進行車 輛碰撞後之各項定性與定量分析,以下針 對碰撞後,乘員或車輛判定項目進行簡要 說明:

(1) 乘員之傷害分析 (定量分析)

乘員傷害指數係依據不同法規要求,其判定項目(頭部、頸部、胸部大腿軸向力等)略有不同,以下舉歐規前面碰撞為例,頭部HPC值小於1000,若頭部未撞擊車上任何部份,則視HPC符合要求,頭部合成加速度不超過80 G,或超過80 G之時間,累積不得超過3 ms(計算至頭部回彈為止)。另針對頸部受傷指數(NIC)、軸向張力與前後向剪力,則依不同之受力時間長短訂定不同之受力值上

限(可參閱ECER94之規範)。頸部Y軸向 彎矩不得超過57 Nm。胸部壓縮指數 (ThCC),不得超過50 mm;胸部黏滯指 數(V*C),不得超過1.0 m/s;脛骨壓力指 數(TCFC),不得超過8 kN;脛骨指數(TI) 量測各脛骨上端與下端每一位置不得超 過1.3;膝關節錯位移動不得超過15 mm。有關各項傷害指數之定義與計算方 式可藉由資料擷取系統根據法規(請參閱 ECER94)之定義,經轉換計算後求得。

(2) 車體碰撞後之判定(含定量/定性)

ARTC規劃之三次元量測系統(Faro Arm)與高速攝影影像分析系統可用於評估碰撞後車體之變形解析。其歐規前面碰撞之判定準則如下:方向盤中心上移(垂直方向)不得超過80 mm,後移(水平方向)不得超過100 mm。測試中,車門不得打開。測試中,前車門鎖不得作動。測試後,在不使用工具情況下必須符合如下之敘述:每排座位至少有一車門被打開,以容許所有乘坐者離開;人偶之束制系統可被解除,若被鎖住,須能以最大60 N的力量解除;不須調整椅背即可將人偶移出車外。

此外,車輛在碰撞後,由燃料系統 所產生之洩漏,其洩漏之速率不得超過

30 g/min., (若有其他液體與油料混合, 且不能輕易的分離,將把所有的液體一 起收集,並加以估算)。

(3) 剛性固定壁之荷重分佈(研究測試)

有關實車碰撞技術之另一領域,包 括新車型評估、事故重建等。ARTC實車 碰撞實驗室之規劃係依據既有經費與需 求急迫性加以衡量,並以可擴充性設計 規劃爲原則。故其設備能量現階段足以

應用於一般之法規檢測,同時強化零組 件碰撞模擬系統之規格與性能,目前雖 尚未規劃固定壁之荷重元量測系統,因 此在評估事故分析之碰撞議題時,可應 用三次元量測系統與高速攝影分析系 統,進行車體變形量之計算,再簡略換 算爲車體吸收能進行初步估算車體碰撞 速度。

主21·ADTC审市保管审除空机供用效的市化

_	表2.1:ARTC實車碰撞實驗室設備規格與功能					
項次	主設備名稱	規格與功能	應用範圍			
1	碰撞主系統 (圖2.5)	- 5公順 - 80 km/h。 - 2公順 - 100 km/h。 - 最大精度: ±0.5 km/h。 - 具雙向曳引功能及緊急停止功能。 - 軌道長度: 196公尺。	 美規前方全面碰撞 (FMVSS208)。 歐規前方偏置碰撞 (ECE R94)。 中國大陸前方碰撞 (GMVDR294、GB11551) 歐規側方碰撞 (ECE R95)。 歐規後方碰撞 (ECE R34)。 			
2	零組件碰撞系統 (圖2.3・2.4)	· 伺服加速模擬系統。 · 採油壓Close Loop控制迴路,可控制較高頻加速度波形 (達400Hz)。 · 最大承載3公噸,小型車可直接架設於台車測試,平台承載尺寸1.5m×3.5m。 · 可控制行程1700mm:測試波形轉換時間2分鐘以内。 · 峰值加速度精度±4%,速度精度±0.3%。	·安全帶動態檢測 (ECE R16波形、CNS5563波形)。 ·兒童安全座椅動態檢測 (ECE R44波形、CNS11497)。 ·座椅動態檢測 (ECER14、ECER17之動態相關)。			
3	人偶與感測系統 (圖2.6)	·採FTSS公司之法規測試用人偶(含感測器)。 ·HYBRIDIII 50%(五十百分位)之前撞人偶(含感測器)。 ·ES-2 之歐規側撞人偶(含感測器)。	· HYBRID III 50%人偶用於美規與歐規前撞,量測人偶頭部傷害指數 (HIC)、頸部傷害指數 (NIC)、胸部傷害指數 (V*C)及大腿軸向受力。 · ES-2可用於歐規側撞 (ECE R95)。			
4	高速攝影系統 (圖2.7)	·採用四部VRI/廠牌Phantom (V9) 之耐衝擊相機,有效解析度1,600x1,200: 低解析度時片速60,000fps。 ·採用一部VRI (V6)之分離式相機 ,可接四個鏡頭。 ·採用四部512x512畫素,耐衝擊,On-Board之固定式高速攝影機。 ·分析軟體:TEMA分析軟體。	·可同時搭配12個攝鏡頭進行高速攝影:可有效提供產業研究測試需求(一般法規測試約需9個鏡頭)。 ·攝影機拍片速度可達10,000fps以上(一般法規需達500fps以上)。 ·分析碰撞運動行為(亦包括Airbag Tracking及人偶頭形輪廓追蹤)。			
5	三次元量測系統 (圖2.8)	·採用Titanium Faro Arm之移動式三次元多關節量測系統。 ·測頭最大移動範圍:3084mm。 ·量測精度:0.025mm。	·應用於量測車體相對或絕對變形量,包括方向盤之變形移動量或乘員之生存空間量測。 ·可應用於車體測試前/後之輪廓變化,或其它領域之研究測試。			
6	資料擷取系統 (圖2.9)	・採用TDAS-G5 64頻道擷取系統。 ・操控軟體與DIAdem軟體,並搭配 Crash Analysis Toolset 及Clip模組軟體。	· 可應用於碰撞過程中,車體與人偶之運動行為分析。			
7	燈光照明系統 (圖2.1,2.5)	·本實驗室採用金屬鏀素燈(Metal Halide),色溫可達5500K, 移動式燈光達256,000流明。	· ARTC之專業化燈光系統,搭配高速攝影機,將可提供良好 之影像解析,以利影像分析。			
8	治具與碰撞台車	· 歐規之側方碰撞台車(含五個125kN荷重元) (圖2.10) · 歐規之後方碰撞台車(圖2.11) · 美規之靜態翻滾設備(圖2.12) · 美規之動態翻滾設備(圖2.13) · 角度(30度)碰撞治具(圖2.14)	· 側方碰撞(ECE R95) · 後方碰撞(ECE R34) · 可執行前方角度碰撞(FMVSS208)			
9	CAE模擬分析 (圖2.15)	· 前/後處理軟體:HyperMesh、PATRAN、FEMB等 · 動態分析軟體:ANSYS,ABAQUS,LS-DYNA,VPG等 · 分析電腦:16 CPU平行運算叢集電腦	·可進行前方碰撞、側方碰撞模擬分析或零組件模擬分析 等。 ·比對實驗檢測數據。			

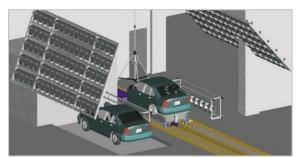


圖2.1:實車碰撞及碰撞模擬測試區示意圖

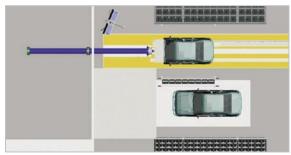


圖2.2:實車碰撞及碰撞模擬測試區上視圖

圖2.3:伺服加速模擬測試設備配置

圖2.4:碰撞模擬測試實例

圖2.5:碰撞主系統(前方偏置碰撞實例)

圖2.6:前撞(右)與側撞(左)人偶

圖2.7: 高速攝影系統

圖2.8:三次元量測系統

圖2.9: 資料擷取系統(TDAS/G5)

圖2.10: 側方(歐規台車)碰撞檢測實例

圖2.11:後方(歐規台車)碰撞檢測實例

圖2.12:靜態翻滾檢測實例

圖2.13:動態翻滾檢測實例

圖2.14:角度(30度)前方碰撞檢測實例

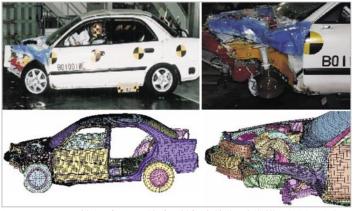


圖2.15: CAE技術應用,前方碰撞試驗與電腦模擬分析比對

三、實車碰撞電腦輔助工程分析技術介紹

近年來,由於電腦運算速度之大幅提昇(如 奈米科技之應用及叢集電腦之平行運算等),以 及非線性有限元素分析法應用於接觸力學之理 論日趨成熟,以CAE(電腦輔助工程分析)進行 3D大變形之整車碰撞分析已蔚爲潮流。CAE可 協助車體之開發設計及結構改良,其優點包括:

- 1. 可於產品開發之各個階段,以數值計算的方 式快速地改變結構設計參數(例如:厚度, 材質,幾何形狀),進行較佳化之結構設 計。
- 2. 可詳細地局部觀察結構之變形歷程及車體各 部反應(例如:結構能量吸收狀況、力流分佈 及參考點之加速度歷時等),以利綜合評估 車體碰撞特性之優劣。
- 3. 可降低實車檢測之次數與失敗率,大幅減少 產品之開發時程與成本。

因應未來國內車輛碰撞法規之執行,爲協 助業者進行車體之設計以符合法規要求,ARTC 於93年起陸續建立整車前撞/側撞及後撞分析技 術,分析時以前處理軟體建構車體之幾何網格 模型以及初始與邊界條件,以碰撞分析軟體作 爲計算核心,以後處理軟體顯示各種碰撞分析 結果。以下將以NCAC(美國國家撞擊中心)所公 佈眾多整車分析模型中挑選一型為例,分別以 歐規(ECE R94/95/32)之要求條件,進行前/側撞

人偶校正分析、整車前撞分析、整車側撞分析 以及整車後撞分析,並藉以概要介紹實車碰撞 之電腦輔助工程分析技術如下:

(一)前/側撞人偶校正分析

在歐規ECE R94及R95之整車前/側撞法規 中,分別以Hybrid III及EuroSID1實驗人偶進行 碰撞之人體損傷評估,並規定於測試前應對前 撞人偶之頭/頸/胸/膝部,及側撞人偶之頭/肩/腹/ 臀部進行標準試驗,要求實驗人偶各方面均應 符合法規Part 572的性能標準;爲進一步確定模 擬分析所使用有限元素人偶模型之可用性,本 文即依法規試驗條件進行Hybrid III及EuroSID1 人偶模型之校正分析,人偶各部之校正之示意 圖如圖3.1與圖3.2,各校正項目之校正分析結果 如表3.1與表3.2。

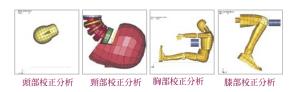


圖3.1: Hybrid Ⅲ頭/頸/胸/膝部之校正分析

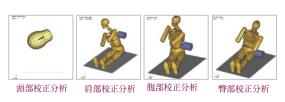
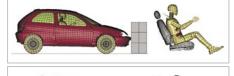


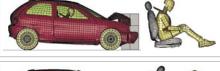
圖3.2: EuroSID1頭/肩/腹/臀部之校正分析

經濟部技術處科技專業

校正項目	法規要求	模擬値	濾波取樣標準	是否符合要求
頭部加速度峰値	225-275 G	250G	CFC 1000	是
頸部最大旋轉角度	81-106度	92度	CFC 60	是
胸部受力峰值	64-73 mm	67 mm	CFC 180	是
膝部撞擊力峰值	4.7-5.8 KN	5.3 KN	CFC 600	是


表3.2: EuroSID 1人偶校正分析結果

校正項目	法規要求	模擬値	濾波取樣標準	是否符合要求
頭部加速度峰値	100-150 G	146 G	CFC 1000	是
肩部擺錘加速度峰值	7.5-10.5 G	9.3 G	CFC 180	是
腹部受力峰值	5.9-7.9 kN	7.4 kN	CFC 600	是
臀部受力	1.04-1.64 KN	1.6 kN	CFC 600	是


(二)整車前撞分析

ECE R94以測試車垂直前方撞擊固定壁, 撞擊速度為56 km/h,車身寬度須以駕駛側與固 定壁重疊,重疊部分爲40%,故稱之爲40%偏 置前方碰撞測試,於前駕駛與乘客座裝置2個 Hybrid III 50 %實驗人偶,以量測碰撞測試時人 偶之真實反應。碰撞過程中車體與人偶之分析 結果示意如圖3.3,依據人偶歷時反應所計算之 人體損傷分析結果如表3.3:

Time=0 ms

Time=40 ms

Time=80 ms

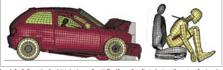


圖3.3:整車前撞分析過程車體與人偶行爲示意圖

表3.3:整車前撞分析人偶損傷指標計算結果

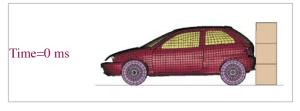
人偶反應量測項目	法規要求	模擬値
頭部HPC値	< 1000	1125
胸部壓縮變形量(ThCC)	< 50 mm	98 mm
胸部黏滯指數(V*C)	< 1.0 m/s	1.6 m/s
脛骨壓力指數(TCFC)	< 8 KN	20.5 kN

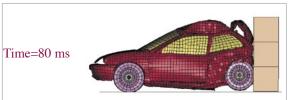
(三)整車側撞分析

ECE R95以一輛可變形表面結構的移動台 車 (Moving Deformation Barrier, MDB) 以50 km/h的速度側方垂直碰撞一輛靜止測試車輛, 撞擊方向爲駕駛座側,測試車輛上裝置一歐規 側面碰撞實驗人偶(EuroSID1)坐於駕駛座上,作 爲量測碰撞相關數據。碰撞過程中車體與人偶 之分析結果示意如圖3.4,依據人偶歷時反應所 計算之人體損傷分析結果如表3.4:

Time=40 ms

圖3.4:整車側撞分析過程車體與人偶行爲示意圖


otive Research & Testing Center 驗室開幕啓用特別報導


表3.4:整車側撞分析人偶損傷指標計算結果

人偶反應量測項目	法規要求	模擬値	是否符合要求
頭部HPC値	< 1000	331.1	是
肋骨壓縮變形量(RDC)	< 42 mm	28.3 mm	是
軟組織標準(VC)	< 1.0 m/s	0.48 m/s	是
腹部峰値力(APF)	< 3.5 kN	1.21 KN	是
恥骨聯合峰値力(PSPF)	< 6 KN	5.2 KN	是

(四)整車後撞分析

ECE R32將目標車靜置於一剛性地面上, 油箱加入90%燃油。以移動剛性壁撞擊目標車 後方。剛性壁速度爲35~38 km/h,其質量爲 110020 kg。碰撞過程中車體結構之變形示意如 圖3.5:

圖3.5:整車後撞分析過程車體行爲示意圖

法規要求碰撞後燃油洩漏量不得大於30 g/min,且車體R Point之最大位移需小於75 mm。本文分析車型之R Point最大位移約為350 mm無法符合法規要求。至於燃料洩漏與否之預 測,則需建立包含後車身段底盤及油箱附近相

關組件之完整分析模型,方能計算出油箱於碰 撞過程中的體積變化,若體積變化超過10%, 則代表油箱有漏油之可能性。由於本文所選取 車型之分析模型並未包含相關組件,故無法預 測漏油與否。

以上所述皆爲依據法規要求所進行之初步 電腦模擬分析,分析結果之準確性則與所模擬 之網格模型包括網格尺寸與形狀、各構件之相 關位置、接合與接觸方式、質量與慣性矩之大 小與分佈、各構件之材料性質以及邊界與初始 條件之設定有關,後續尚需再經由與實車碰撞 測試結果之詳細比對,逐步修正調整分析模 型,以掌握適當且正確之車輛碰撞分析模擬方 式。

在碰撞分析結果之判讀與應用方面,除需 仔細判斷分析結果之準確性外,亦可經由分析 所得各部位之位移、速度、加速度、力、力 矩、動能與應變能等詳細數據資料,深入瞭解 所分析車輛之結構行為特性,並據以檢討可行 之設計改善方案,依改善方案調整分析模型 後,再進行分析以確認改善方案之可行性,如 此將可逐步建立分析數據資料庫,累積車輛碰 撞設計之偵錯改良經驗,達到建立設計準則與 指引設計之應用目標。

四、實車碰撞技術之未來發展規劃

ARTC「實車碰撞實驗室」之建置完成,將 使國內之車輛安全進入另一個新階段,日後將 朝結合國內外各界之能量資源,以及充分運用 所建置之「實車碰撞實驗室」之方向繼續努 力。以下將就實車碰撞技術之應用與發展項 目、執行方式及其影響與效益,概要說明車輛 碰撞技術之未來發展規劃。

(一) 應用與發展項目

ARTC「實車碰撞實驗室」可以應用與發展 之項目包括:

- 1. 持續研究精進碰撞測試與分析技術,充分掌 握精確度與效能。
- 2. 取得碰撞實驗室品質系統認可。
- 3. 取得國內外碰撞法規測試與驗證測試之認可 授權,執行車輛碰撞法規與驗證測試。
- 4. 協助政府研訂車輛安全法規,如幼童車之幼 童乘坐方式之安全性比較等。
- 5.配合學界及業界進行各類車輛安全研發計畫。
- 6. 配合業界需求,協助建置CAE碰撞分析能 量。
- 7. 配合業界之產品設計開發,共同建立車輛產 品安全設計之偵錯與改良技術。
- 8. 累積國內車輛碰撞測試與分析資料庫,做為 各項車輛安全之資訊應用與研究之重要基 礎。

- 9. 提供社會大眾團體相關之車輛碰撞安全技術 協助,如協助研判事故車輛之碰撞損傷特 性等。
- 10. 與國際上相關之車輛碰撞測試機構密切技 術交流合作,促進國內車輛安全之技術研 究發展。

(二)執行方式

針對前述之應用與發展項目,初步規劃車 輛碰撞技術應用與發展之執行方式如圖4.1。為 能有效整合國內外車輛CAE技術研發服務能量 資源,發揮整體規劃與團體合作效能,ARTC在 經濟部技術處之指導下,已號召國內具車輛 CAE分析技術能量之16個產、學、研單位,成 立了『車輛及零組件CAE技術研發服務聯盟』, 期能廣泛提供國內車輛產品設計研究開發所 需,包括車輛碰撞分析在內之各項CAE技術研 發服務。車輛及零組件CAE技術研發服務聯盟 之能量架構如圖4.2。日後期能以實車碰撞實驗 室爲基礎,透過圖4.1之執行方式,增進各相關 單位人員之互動與合作機會,逐步達成整合國 內技術資源能量,發揮整體合作效能之目標。

(三)影響與效益

經由前述各項實車碰撞技術發展與應用項 目之切實執行,相信對於提昇國內車輛產業之 自主設計研發、增進車輛產品設計品質、降低 開發時程與成本、車輛產業設計研發與國際接

CRASH TEST LAB 驗室開幕啓用特別報導

軌、落實設計研發根留台灣以及提昇車輛產業 競爭力等方面,皆能發揮相當正面之影響與效 益;同時,亦可藉由各項目之應用與發展,長 期培養國內車輛領域更多後繼之車輛專業人 才,將國內車輛領域之發展帶進另一階段之良 性循環,使國內之車輛安全領域更上層樓。

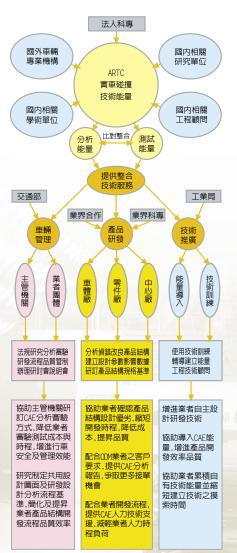


圖4.1 車輛碰撞技術應用與發展執行方式

圖4.2 車輛及零組件CAE技術研發服務聯盟之能量架構